Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  Barrierefreiheit    Kontakt MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
ccc_logo_en.gif
 
AKH Wien
 
 
Hauptnavigation
  • Home
  • Über das CCC
    • Allgemeines
    • Leitung der Organisationseinheit
    • CCC-Office Team
    • Kliniken und Partner
    • Qualitätsmanagement
    • Kontakt
  • PatientInnen
    • Covid-19
    • Allgemeines
    • Cancer School
    • Terminvereinbarung
    • Pflegeambulanz
    • PatientInnenvertretung
    • Links
  • Klinischer Bereich
    • Allgemeines
    • CCC Tumorboards
  • Wissenschaft & Forschung
    • Young CCC
    • CCC-ExpertInnenvideos
    • CCC Forschungscluster
    • CCC Units
    • CCC Platforms
    • Translationale Forschung
    • CCC Best Paper Award
    • CCC-TRIO Symposium
    • Kontakt/Links
  • Lehre
    • CCC Cancer School
    • CCC Cancer Update
    • Vienna International Summer School on Clinical and Experimental Oncology - VSSO
    • Interdisziplinäre onkologische Ausbildung
    • Klinisch-Praktisches Jahr (KPJ)
    • PhD Programme
    • Postgraduelle Fort- und Weiterbildung
    • Information/Contact
 
 
Subnavigation
    Inhaltsbereich


    Zurück zur Übersicht
    Medical image analysis. 2022 Nov 23. doi: 10.1016/j.media.2022.102699. pii: S1361-8415(22)00327-9
    Mitosis domain generalization in histopathology images - The MIDOG challenge.
    Aubreville M1,  Stathonikos N2,  Bertram CA3,  Klopfleisch R4,  Ter Hoeve N5,  Ciompi F6,  Wilm F7,  Marzahl C8,  Donovan TA9,  Maier A10,  Breen J11,  Ravikumar N12,  Chung Y13,  Park J14,  Nateghi R15,  Pourakpour F16,  Fick RHJ17,  Ben Hadj S18,  Jahanifar M19,  Shephard A20,  Dexl J21,  Wittenberg T22,  Kondo S23,  Lafarge MW24,  Koelzer VH25,  Liang J26,  Wang Y27,  Long X28,  Liu J29,  Razavi S30,  Khademi A31,  Yang S32,  Wang X33,  Erber R34,  Klang A35,  Lipnik K36,  Bolfa P37,  Dark MJ38,  Wasinger G39,  Veta M40,  Breininger K41
    Author information
    1Technische Hochschule Ingolstadt, Ingolstadt, Germany. Electronic address: marc.aubreville@thi.de.
    2Pathology Department, UMC Utrecht, Utrecht, The Netherlands.
    3Institute of Pathology, University of Veterinary Medicine, Vienna, Austria.
    4Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany.
    5Pathology Department, UMC Utrecht, Utrecht, The Netherlands.
    6Computational Pathology Group, Radboud UMC, Nijmegen, The Netherlands.
    7Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
    8Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
    9Department of Anatomic Pathology, Schwarzman Animal Medical Center, NY, USA.
    10Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
    11CISTIB Center for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK.
    12CISTIB Center for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK.
    13Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
    14Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
    15Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran.
    16Iranian Brain Mapping Biobank (IBMB), National Brain Mapping Laboratory (NBML), Tehran, Iran.
    17Tribun Health, Paris, France.
    18Tribun Health, Paris, France.
    19Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Warwick, UK.
    20Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Warwick, UK.
    21Fraunhofer-Institute for Integrated Circuits IIS, Erlangen, Germany.
    22Fraunhofer-Institute for Integrated Circuits IIS, Erlangen, Germany.
    23Muroran Institute of Technology, Hokkaido, Japan.
    24Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland.
    25Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland.
    26School of Life Science and Technology, Xidian University, Shannxi, China.
    27School of Life Science and Technology, Xidian University, Shannxi, China.
    28Histo Pathology Diagnostic Center, Shanghai, China.
    29Xi'an Jiaotong-Liverpool University, Suzhou, China.
    30Image Analysis in Medicine Lab (IAMLAB), Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.
    31Image Analysis in Medicine Lab (IAMLAB), Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.
    32Tencent AI Lab, Shenzhen 518057, China.
    33College of Computer Science, Sichuan University, Chengdu 610065, China.
    34Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
    35Institute of Pathology, University of Veterinary Medicine, Vienna, Austria.
    36Institute of Pathology, University of Veterinary Medicine, Vienna, Austria.
    37Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
    38College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
    39Department of Pathology, General Hospital of Vienna, Medical University of Vienna, Vienna, Austria.
    40Medical Image Analysis Group, TU Eindhoven, Eindhoven, The Netherlands.
    41Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
    Abstract

    The density of mitotic figures (MF) within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of MF by pathologists is subject to a strong inter-rater bias, limiting its prognostic value. State-of-the-art deep learning methods can support experts but have been observed to strongly deteriorate when applied in a different clinical environment. The variability caused by using different whole slide scanners has been identified as one decisive component in the underlying domain shift. The goal of the MICCAI MIDOG 2021 challenge was the creation of scanner-agnostic MF detection algorithms. The challenge used a training set of 200 cases, split across four scanning systems. As test set, an additional 100 cases split across four scanning systems, including two previously unseen scanners, were provided. In this paper, we evaluate and compare the approaches that were submitted to the challenge and identify methodological factors contributing to better performance. The winning algorithm yielded an F score of 0.748 (CI95: 0.704-0.781), exceeding the performance of six experts on the same task.


    Copyright © 2022 Elsevier B.V. All rights reserved.

    KEYWORDS: Challenge, Deep Learning, Domain generalization, Histopathology, Mitosis

    Publikations ID: 36463832
    Quelle: öffnen
     
    Drucken
     
    ccc_logo_en.gif
    ccc_logo_en.gif
    ccc_logo_en.gif

    Schnellinfo

     
    -- Initiative Krebsforschung / Krebsforschungslauf

    -- Cancer Care
    -- Kliniken und Partner
    -- CCC Cancer School
    -- Young CCC
    -- CCC Tumorboards
    -- CCC Forschungscluster
    -- CCC Units
    -- CCC Platforms
    -- SOPs / Leitlinien
    -- Kontakt
    Zuklappen
     
    Ausklappen
     
     

    Featured

     
     
     
     
     
     
     
     
     
     
     
     
     
    © MedUni Wien |
     Impressum | Nutzungsbedingungen | Kontakt