Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  Barrierefreiheit    Kontakt MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
ccc_logo_en.gif
 
AKH Wien
 
 
Hauptnavigation
  • Livestream 2021
  • Home
  • Über das CCC
    • Allgemeines
    • Leitung der Organisationseinheit
    • CCC-Office Team
    • Kliniken und Partner
    • Qualitätsmanagement
    • Kontakt
  • PatientInnen
    • Covid-19
    • Allgemeines
    • Cancer School
    • Terminvereinbarung
    • Pflegeambulanz
    • PatientInnenvertretung
    • Links
  • Klinischer Bereich
    • Allgemeines
    • CCC Tumorboards
  • Wissenschaft & Forschung
    • Young CCC
    • CCC-ExpertInnenvideos
    • CCC Forschungscluster
    • CCC Units
    • CCC Platforms
    • Translationale Forschung
    • CCC Best Paper Award
    • CCC-TRIO Symposium
    • Kontakt/Links
  • Lehre
    • CCC Cancer School
    • Vienna International Summer School on Clinical and Experimental Oncology - VSSO
    • CCC Excellence Lecture
    • Interdisziplinäre onkologische Ausbildung
    • Klinisch-Praktisches Jahr (KPJ)
    • PhD Programme
    • Postgraduelle Fort- und Weiterbildung
    • Information/Contact
 
 
Subnavigation
    Inhaltsbereich


    Zurück zur Übersicht
    Cells. 2021 Sep 25. pii: cells10102539. doi: 10.3390/cells10102539
    Deep Learning to Decipher the Progression and Morphology of Axonal Degeneration.
    Palumbo A1,  Grüning P2,  Landt SK3,  Heckmann LE4,  Bartram L5,  Pabst A6,  Flory C7,  Ikhsan M8,  Pietsch S9,  Schulz R10,  Kren C11,  Koop N12,  Boltze J13,  Madany Mamlouk A14,  Zille M15
    Author information
    1Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    2Institute for Neuro- and Bioinformatics, University of Lübeck, 23562 Lübeck, Germany.
    3Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    4Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    5Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    6Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    7Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    8Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    9Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    10Wissenschaftliche Werkstätten, University of Lübeck, 23562 Lübeck, Germany.
    11Medical Laser Center Lübeck GmbH, 23562 Lübeck, Germany.
    12Medical Laser Center Lübeck GmbH, 23562 Lübeck, Germany.
    13Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    14Institute for Neuro- and Bioinformatics, University of Lübeck, 23562 Lübeck, Germany.
    15Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany.
    Abstract

    Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and develop effective therapies. Here, we evaluated the progression of AxD in cortical neurons using a novel microfluidic device together with a deep learning tool that we developed for the enhanced-throughput analysis of AxD on microscopic images. The trained convolutional neural network (CNN) sensitively and specifically segmented the features of AxD including axons, axonal swellings, and axonal fragments. Its performance exceeded that of the human evaluators. In an in vitro model of AxD in hemorrhagic stroke induced by the hemolysis product hemin, we detected a time-dependent degeneration of axons leading to a decrease in axon area, while axonal swelling and fragment areas increased. Axonal swellings preceded axon fragmentation, suggesting that swellings may be reliable predictors of AxD. Using a recurrent neural network (RNN), we identified four morphological patterns of AxD (granular, retraction, swelling, and transport degeneration). These findings indicate a morphological heterogeneity of AxD in hemorrhagic stroke. Our EntireAxon platform enables the systematic analysis of axons and AxD in time-lapse microscopy and unravels a so-far unknown intricacy in which AxD can occur in a disease context.


    KEYWORDS: axon, brain hemorrhage, cell culture, cortical neurons, machine learning, microfluidic, microscopy, stroke, time-lapse

    Publikations ID: 34685519
    Quelle: öffnen
     
    Drucken
     
    ccc_logo_en.gif
    ccc_logo_en.gif
    ccc_logo_en.gif

    Schnellinfo

     
    -- Initiative Krebsforschung / Krebsforschungslauf

    -- Cancer Care
    -- Kliniken und Partner
    -- CCC Cancer School
    -- Young CCC
    -- CCC Tumorboards
    -- CCC Forschungscluster
    -- CCC Units
    -- CCC Platforms
    -- SOPs / Leitlinien
    -- Kontakt
    Zuklappen
     
    Ausklappen
     
     

    Featured

     
     
     
     
     
     
     
     
     
     
     
     
     
    © MedUni Wien |
     Impressum | Nutzungsbedingungen | Kontakt