Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  Barrierefreiheit    Kontakt MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
ccc_logo_en.gif
 
AKH Wien
 
 
Hauptnavigation
  • Livestream 2021
  • Home
  • Über das CCC
    • Allgemeines
    • Leitung der Organisationseinheit
    • CCC-Office Team
    • Kliniken und Partner
    • Qualitätsmanagement
    • Kontakt
  • PatientInnen
    • Covid-19
    • Allgemeines
    • Cancer School
    • Terminvereinbarung
    • Pflegeambulanz
    • PatientInnenvertretung
    • Links
  • Klinischer Bereich
    • Allgemeines
    • CCC Tumorboards
  • Wissenschaft & Forschung
    • Young CCC
    • CCC-ExpertInnenvideos
    • CCC Forschungscluster
    • CCC Units
    • CCC Platforms
    • Translationale Forschung
    • CCC Best Paper Award
    • CCC-TRIO Symposium
    • Kontakt/Links
  • Lehre
    • CCC Cancer School
    • Vienna International Summer School on Clinical and Experimental Oncology - VSSO
    • CCC Excellence Lecture
    • Interdisziplinäre onkologische Ausbildung
    • Klinisch-Praktisches Jahr (KPJ)
    • PhD Programme
    • Postgraduelle Fort- und Weiterbildung
    • Information/Contact
 
 
Subnavigation
    Inhaltsbereich


    Zurück zur Übersicht
    Nature cell biology. 2019 Jun 3. doi: 10.1038/s41556-019-0328-z. pii: 10.1038/s41556-019-0328-z
    Mapping phospho-catalytic dependencies of therapy-resistant tumours reveals actionable vulnerabilities.
    Coppé JP1,  Mori M2,  Pan B3,  Yau C4,  Wolf DM5,  Ruiz-Saenz A6,  Brunen D7,  Prahallad A8,  Cornelissen-Steijger P9,  Kemper K10,  Posch C11,  Wang C12,  Dreyer CA13,  Krijgsman O14,  Lee PRE15,  Chen Z16,  Peeper DS17,  Moasser MM18,  Bernards R19,  van 't Veer LJ20
    Author information
    1Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. Jean-Philippe.Coppe@ucsf.edu.
    2Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    3Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    5Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    6Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    7Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    8Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    9Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    10Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    11Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    12Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    13Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    14Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    15Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    16The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
    17Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    18Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    19Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.
    20Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
    Abstract

    Phosphorylation networks intimately regulate mechanisms of response to therapies. Mapping the phospho-catalytic profile of kinases in cells or tissues remains a challenge. Here, we introduce a practical high-throughput system to measure the enzymatic activity of kinases using biological peptide targets as phospho-sensors to reveal kinase dependencies in tumour biopsies and cell lines. A 228-peptide screen was developed to detect the activity of >60 kinases, including ABLs, AKTs, CDKs and MAPKs. Focusing on BRAF tumours, we found mechanisms of intrinsic resistance to BRAF-targeted therapy in colorectal cancer, including targetable parallel activation of PDPK1 and PRKCA. Furthermore, mapping the phospho-catalytic signatures of melanoma specimens identifies RPS6KB1 and PIM1 as emerging druggable vulnerabilities predictive of poor outcome in BRAF patients. The results show that therapeutic resistance can be caused by the concerted upregulation of interdependent pathways. Our kinase activity-mapping system is a versatile strategy that innovates the exploration of actionable kinases for precision medicine.


    Publikations ID: 31160710
    Quelle: öffnen
     
    Drucken
     
    ccc_logo_en.gif
    ccc_logo_en.gif
    ccc_logo_en.gif

    Schnellinfo

     
    -- Initiative Krebsforschung / Krebsforschungslauf

    -- Cancer Care
    -- Kliniken und Partner
    -- CCC Cancer School
    -- Young CCC
    -- CCC Tumorboards
    -- CCC Forschungscluster
    -- CCC Units
    -- CCC Platforms
    -- SOPs / Leitlinien
    -- Kontakt
    Zuklappen
     
    Ausklappen
     
     

    Featured

     
     
     
     
     
     
     
     
     
     
     
     
     
    © MedUni Wien |
     Impressum | Nutzungsbedingungen | Kontakt