Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  Barrierefreiheit    Kontakt MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
ccc_logo_en.gif
 
AKH Wien
 
 
Hauptnavigation
  • Livestream 2021
  • Home
  • Über das CCC
    • Allgemeines
    • Leitung der Organisationseinheit
    • CCC-Office Team
    • Kliniken und Partner
    • Qualitätsmanagement
    • Kontakt
  • PatientInnen
    • Covid-19
    • Allgemeines
    • Cancer School
    • Terminvereinbarung
    • Pflegeambulanz
    • PatientInnenvertretung
    • Links
  • Klinischer Bereich
    • Allgemeines
    • CCC Tumorboards
  • Wissenschaft & Forschung
    • Young CCC
    • CCC-ExpertInnenvideos
    • CCC Forschungscluster
    • CCC Units
    • CCC Platforms
    • Translationale Forschung
    • CCC Best Paper Award
    • CCC-TRIO Symposium
    • Kontakt/Links
  • Lehre
    • CCC Cancer School
    • Vienna International Summer School on Clinical and Experimental Oncology - VSSO
    • CCC Excellence Lecture
    • Interdisziplinäre onkologische Ausbildung
    • Klinisch-Praktisches Jahr (KPJ)
    • PhD Programme
    • Postgraduelle Fort- und Weiterbildung
    • Information/Contact
 
 
Subnavigation
    Inhaltsbereich


    Zurück zur Übersicht
    Investigative ophthalmology & visual science. pii: 2681209. doi: 10.1167/iovs.17-22902
    Comparison of SD-Optical Coherence Tomography Angiography and Indocyanine Green Angiography in Type 1 and 2 Neovascular Age-related Macular Degeneration.
    Told R1,  Sacu S2,  Hecht A3,  Baratsits M4,  Eibenberger K5,  Kroh ME6,  Rezar-Dreindl S7,  Schlanitz FG8,  Weigert G9,  Pollreisz A10,  Schmidt-Erfurth U11
    Author information
    1Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    2Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    3Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    4Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    5Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    6Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    7Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    8Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    9Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    10Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    11Department of Ophthalmology and Optometry, Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria.
    Abstract

    PURPOSE: The purpose of this study is to compare the ability of spectral domain optical coherence tomography angiography (SD-OCTA) and indocyanine green angiography (ICGA) to detect and measure lesion area in patients with type 1 and 2 choroidal neovascularization (CNV).

    METHODS: Types 1 and 2 neovascular AMD (nAMD) were included in this prospective and observational case series. ETDRS best-corrected visual acuity (BCVA), ophthalmic examination with funduscopy, OCTA (AngioVue), fluorescein angiography (FA), ICGA, and OCT (Spectralis) were performed. CNV measurements were done manually by two experienced graders using the systems' innate region selection tools.

    RESULTS: Forty eyes of 39 consecutive patients with nAMD were included. Mean age was 77 ± 6.4 years, ETDRS BCVA was 67 ± 13 letters, and 11 eyes were treatment naïve. Nineteen CNV lesions were classified as type 1 and 21 as type 2. ICGA was able to identify CNV in all eyes. By contrast, OCTA detected CNV in 95% of type 1 and 86% of type 2 nAMD eyes. Mean overall CNV area (CNV-A) was 2.8 ± 2.7 mm2 in ICGA and 2.1 ± 2.7 mm2 in OCTA. Both lesion types CNV-A appeared significantly smaller in OCTA compared with ICGA (P < 0.01). Bland-Altman plot revealed a mean difference (bias) between OCTA and ICGA CNV-A of 0.76 ± 1.74 mm2. Intraclass correlation coefficient (ICC) for CNV-A was 0.91 and 0.93 for ICGA and OCTA, respectively. ICGA CNV-A in the four OCTA-negative eyes (median 4.7 mm2) was not significantly different from the 36 OCTA-positive eyes (median 1.7 mm2).

    CONCLUSIONS: Type 1 and 2 CNV-A were significantly smaller in OCTA than in ICGA. OCTA was generally less successful in detecting CNV than ICGA in patients who were included into this study based on FA and OCT. However, OCTA detected all type 1 lesions except for one, indicating that the SD-OCTA signal is limited by detection limits of blood flow velocity rather than lesion type. Further efforts are needed pushing the limits of lowest detectable and fastest distinguishable flow until OCTA can deliver realistic qualitative and quantitative imaging of type 1 and 2 CNV for diagnosis and monitoring.


    Publikations ID: 29847645
    Quelle: öffnen
     
    Drucken
     
    ccc_logo_en.gif
    ccc_logo_en.gif
    ccc_logo_en.gif

    Schnellinfo

     
    -- Initiative Krebsforschung / Krebsforschungslauf

    -- Cancer Care
    -- Kliniken und Partner
    -- CCC Cancer School
    -- Young CCC
    -- CCC Tumorboards
    -- CCC Forschungscluster
    -- CCC Units
    -- CCC Platforms
    -- SOPs / Leitlinien
    -- Kontakt
    Zuklappen
     
    Ausklappen
     
     

    Featured

     
     
     
     
     
     
     
     
     
     
     
     
     
    © MedUni Wien |
     Impressum | Nutzungsbedingungen | Kontakt