Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  Barrierefreiheit    Kontakt MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
ccc_logo_en.gif
 
AKH Wien
 
 
Hauptnavigation
  • Livestream 2021
  • Home
  • Über das CCC
    • Allgemeines
    • Leitung der Organisationseinheit
    • CCC-Office Team
    • Kliniken und Partner
    • Qualitätsmanagement
    • Kontakt
  • PatientInnen
    • Covid-19
    • Allgemeines
    • Cancer School
    • Terminvereinbarung
    • Pflegeambulanz
    • PatientInnenvertretung
    • Links
  • Klinischer Bereich
    • Allgemeines
    • CCC Tumorboards
  • Wissenschaft & Forschung
    • Young CCC
    • CCC-ExpertInnenvideos
    • CCC Forschungscluster
    • CCC Units
    • CCC Platforms
    • Translationale Forschung
    • CCC Best Paper Award
    • CCC-TRIO Symposium
    • Kontakt/Links
  • Lehre
    • CCC Cancer School
    • Vienna International Summer School on Clinical and Experimental Oncology - VSSO
    • CCC Excellence Lecture
    • Interdisziplinäre onkologische Ausbildung
    • Klinisch-Praktisches Jahr (KPJ)
    • PhD Programme
    • Postgraduelle Fort- und Weiterbildung
    • Information/Contact
 
 
Subnavigation
    Inhaltsbereich


    Zurück zur Übersicht
    Blood. 2018 May 21. pii: blood-2018-02-834895. doi: 10.1182/blood-2018-02-834895
    Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors.
    Maifrede S1,  Nieborowska-Skorska M2,  Sullivan K3,  Dasgupta Y4,  Podszywalow-Bartnicka P5,  Le BV6,  Solecka M7,  Lian Z8,  Belyaeva EA9,  Nersesyan A10,  Machnicki MM11,  Toma M12,  Chatain N13,  Rydzanicz M14,  Zhao H15,  Jelinek J16,  Piwocka K17,  Sliwinski T18,  Stoklosa T19,  Ploski R20,  Fischer T21,  Sykes SM22,  Koschmieder S23,  Bullinger L24,  Valent P25,  Wasik M26,  Huang J27,  Skorski T28
    Author information
    1Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    2Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    3Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    4Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    5Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland.
    6Microbiology and Immunology, Nencki Institute of Experimental Biology, Warsaw, Poland.
    7Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    8Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    9Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States.
    10Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    11Department of Immunology, The Medical University of Warsaw, Warsaw, Poland.
    12Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
    13Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH UK Aachen, Aachen, Germany.
    14Department of Medical Genetics, The Medical University of Warsaw, Warsaw, Poland.
    15Department of Clinical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    16Fels Institute for Cancer Research & Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    17Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland.
    18Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
    19Department of Immunology, The Medical University of Warsaw, Warsaw, Poland.
    20Department of Medical Genetics, The Medical University of Warsaw, Warsaw, Poland.
    21Department of Hematology/Oncology, Center of Internal Medicine, Otto-von-Guericke-University, Magdeburg, Germany.
    22Immune Cell Development and Host Defense, Research Institute of Fox Chase Cancer Center, Philadelphia, PA, United States.
    23Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH UK Aachen, Aachen, Germany.
    24Hematology, Oncology and Tumor Immunology, Campus Virchow Klinikum, Charite-University Medicine, University of Ulm, Berlin, Germany.
    25Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.
    26Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States.
    27Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
    28Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; tskorski@temple.edu.
    Abstract

    Mutations in the FMS-like tyrosine-kinase 3 (FLT3) such as internal tandem duplications (ITD) can be found in up to 23% of patients with acute myeloid leukemia (AML) and confer a poor prognosis. Current treatment options for FLT3(ITD)-positive AMLs include genotoxic therapy and FLT3 inhibitors (FLT3i), which are rarely curative. PARP1 inhibitors (PARP1i) have been successfully applied to induce synthetic lethality in tumors harboring BRCA1/2 mutations and displaying homologous recombination (HR) deficiency. We show here that inhibition of FLT3(ITD) kinase by the FLT3 kinase inhibitor (FLT3i) AC220 caused downregulation of DNA repair proteins BRCA1, BRCA2, PALB2, RAD51, and LIG4, resulting in inhibition of two major DNA double-strand breaks (DSBs) repair pathways, HR and non-homologous end-joining (NHEJ). PARP1i, olaparib and BMN673, caused accumulation of lethal DSBs and cell death in AC220-treated FLT3(ITD)-positive leukemia cells thus mimicking synthetic lethality. Moreover, the combination of FLT3i and PARP1i eliminated FLT3(ITD)-positive quiescent and proliferating leukemia stem cells as well as leukemic progenitors from human and mouse leukemia samples. Notably, the combination of AC220 and BMN673 significantly delayed disease onset and effectively reduced leukemia initiating cells in a FLT3(ITD)-positive primary AML xenograft mouse model. In conclusion, we postulate that FLT3i-induced deficiencies in DSB repair pathways sensitize FLT3(ITD)-positive AML cells to synthetic lethality triggered by PARP1i. Therefore FLT3(ITD) could be used as a precision medicine marker for identifying AML patients that may benefit from a therapeutic regimen combining FLT3 and PARP1 inhibitors.


    Copyright © 2018 American Society of Hematology.

    Publikations ID: 29784639
    Quelle: öffnen
     
    Drucken
     
    ccc_logo_en.gif
    ccc_logo_en.gif
    ccc_logo_en.gif

    Schnellinfo

     
    -- Initiative Krebsforschung / Krebsforschungslauf

    -- Cancer Care
    -- Kliniken und Partner
    -- CCC Cancer School
    -- Young CCC
    -- CCC Tumorboards
    -- CCC Forschungscluster
    -- CCC Units
    -- CCC Platforms
    -- SOPs / Leitlinien
    -- Kontakt
    Zuklappen
     
    Ausklappen
     
     

    Featured

     
     
     
     
     
     
     
     
     
     
     
     
     
    © MedUni Wien |
     Impressum | Nutzungsbedingungen | Kontakt