Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
  Barrierefreiheit    Kontakt MedUni Wien    Intranet    MedUni Wien - Shop    Universitätsbibliothek    Universitätsklinikum AKH Wien  
 
ccc_logo_en.gif
 
AKH Wien
 
 
Hauptnavigation
  • Livestream 2021
  • Home
  • Über das CCC
    • Allgemeines
    • Leitung der Organisationseinheit
    • CCC-Office Team
    • Kliniken und Partner
    • Qualitätsmanagement
    • Kontakt
  • PatientInnen
    • Covid-19
    • Allgemeines
    • Cancer School
    • Terminvereinbarung
    • Pflegeambulanz
    • PatientInnenvertretung
    • Links
  • Klinischer Bereich
    • Allgemeines
    • CCC Tumorboards
  • Wissenschaft & Forschung
    • Young CCC
    • CCC-ExpertInnenvideos
    • CCC Forschungscluster
    • CCC Units
    • CCC Platforms
    • Translationale Forschung
    • CCC Best Paper Award
    • CCC-TRIO Symposium
    • Kontakt/Links
  • Lehre
    • CCC Cancer School
    • Vienna International Summer School on Clinical and Experimental Oncology - VSSO
    • CCC Excellence Lecture
    • Interdisziplinäre onkologische Ausbildung
    • Klinisch-Praktisches Jahr (KPJ)
    • PhD Programme
    • Postgraduelle Fort- und Weiterbildung
    • Information/Contact
 
 
Subnavigation
    Inhaltsbereich


    Zurück zur Übersicht
    Free radical biology & medicine. 2013 Aug 27. pii: S0891-5849(13)00576-5. doi: 10.1016/j.freeradbiomed.2013.08.173
    Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells.
    Wang B1,  Van Veldhoven PP2,  Brees C3,  Rubio N4,  Nordgren M5,  Apanasets O6,  Kunze M7,  Baes M8,  Agostinis P9,  Fransen M10
    Author information
    1Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    2Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    3Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    4Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    5Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    6Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    7Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
    8Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    9Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
    10Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium. Electronic address: marc.fransen@med.kuleuven.be.
    Abstract

    Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.


    Copyright © 2013 Elsevier Inc. All rights reserved.

    KEYWORDS: ALS, CAT, Cell death, ER, Free radicals, GSTK1, HuF, KR, KillerRed, LA, Lipid peroxidation, MEF, Mitochondria, N-acetylcysteine, NAC, Organelle cross-talk, Oxidative stress, PARP, Peroxisomes, RIPK1, ROS, Redox signaling, SOD1, amyotrophic lateral sclerosis, c, catalase, cytosolic, endoplasmic reticulum, glutathione S-transferase kappa 1, human fibroblast, mitochondrial, mouse embryonic fibroblast, mt, peroxisomal, po, poly(ADP-ribose) polymerase, reactive oxygen species, receptor-interacting protein kinase 1, superoxide dismutase 1, α-lipoic acid

    Publikations ID: 23988789
    Quelle: öffnen
     
    Drucken
     
    ccc_logo_en.gif
    ccc_logo_en.gif
    ccc_logo_en.gif

    Schnellinfo

     
    -- Initiative Krebsforschung / Krebsforschungslauf

    -- Cancer Care
    -- Kliniken und Partner
    -- CCC Cancer School
    -- Young CCC
    -- CCC Tumorboards
    -- CCC Forschungscluster
    -- CCC Units
    -- CCC Platforms
    -- SOPs / Leitlinien
    -- Kontakt
    Zuklappen
     
    Ausklappen
     
     

    Featured

     
     
     
     
     
     
     
     
     
     
     
     
     
    © MedUni Wien |
     Impressum | Nutzungsbedingungen | Kontakt